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We study the average mobilities and long-time self-diffusion coefficients of a suspension 
of bimodally distributed spherical particles. Stokesian dynamics is used to calculate the 
particle trajectories for a monolayer of bimodal-sized spheres. Hydrodynamic forces 
only are considered and they are calculated using the inverse of the grand mobility 
matrix for far-field many-body interactions and lubrication formulae for near-field 
effects. We determine both the detailed microstructure (e.g. the pair-connectedness 
function and cluster formation) and the macroscopic properties (e.g. viscosity and self- 
diffusion coefficients). The flow of an ‘infinite ’ suspension is simulated by considering 
25, 49, 64 and 100 particles to be one ‘cell’ of a periodic array. Effects of both the size 
ratio and the relative fractions of the different-sized particles are examined. For the 
microstructures, the pair-connectedness function shows that the particles form clusters 
in simple shearing flow due to lubrication forces. The nearly symmetric angular 
structures imply the absence of normal stress differences for a suspension with purely 
hydrodynamic interactions between spheres. For average mobilities at infinite PCclet 
number, D:, our simulation results suggest that the reduction of D: as concentration 
increases is directly linked to the influence of particle size distribution on the average 
cluster size. For long-time self-diffusion coefficients, 02, we found good agreement 
between simulation and experiment (Leighton & Acrovos 1 9 8 7 ~ ;  Phan and Leighton 
1993) for monodispersed suspensions. For bimodal suspensions, the magnitude of 02, 
and the time to reach the asymptotic diffusive behaviour depend on the cluster size 
formed in the system, or the viscosity of the suspension. We also consider the effect of 
the initial configuration by letting the spheres be both organized (size segregated) and 
randomly placed. We find that it takes a longer time for a suspension with an initially 
organized structure to achieve steady state than one with a random structure. 

1. Introduction 
Over the last two decades, our understanding of the microrheological and transport 

properties of non-dilute suspensions of spherical particles has benefited from several 
experimental and theoretical advances. Computational methods have evolved that 
permit the determination of the dynamics of suspension microstructures due to an 
imposed flow or force, even at particle concentrations near maximum packing. 
Concomitantly, transport properties, for example, the relative shear viscosity, can be 
predicted (Brady & Bossis 1988). Nearly all of this work has focused on suspensions 
of monodispersed spherical particles. From a practical standpoint, most suspensions 
are composed of particles of various shapes and sizes. Even in suspensions composed 
of approximately spherical particles, at very high volume loadings it is usually desirable 
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to have a distribution of particle sizes to aid in processing (Miller, Lee & Powell 1991). 
In a recent study (Chang & Powell 1993), we have shown that the rheological 
properties of suspensions of bimodally distributed spherical particles could be 
predicted using Stokesian dynamics (Brady & Bossis 1988). In this paper, by using 
simulations of a monolayer, we expand these results to include predictions of 
suspension microstructure and other transport properties, such as shear-induced 
diffusivities. 

Recent experimental work has led to conclusive evidence for ' shear-induced 
hydrodynamic diffusion' (e.g. Eckstein, Bailey & Shapiro 1977; Gadala-Maria & 
Acrivos 1980; Graham et al. 1991 ; Abbott et al. 1991 ; Leighton & Acrivos 1987a, b;  
Nadim 1988; Koch 1989; Phillips et al. 1992; Phan & Leighton 1993). This effect exists 
at high Peclet numbers, Pe, when Brownian diffusion effects are insignificant; and at 
low particle Reynolds numbers, Re, when inertial effects are precluded. Hence, shear- 
induced hydrodynamic diffusion is unrelated to either the random thermal motion of 
fluid molecules surrounding each particle, or particle drift during flow due to inertial 
forces. 

Different mechanisms cause particles in a suspension to migrate from one region to 
another solely by hydrodynamic forces (Leighton & Acrivos 1987a, b ;  Phillips et al. 
1992). In flows with shear rate gradients, particles drift from regions of high shear rate 
to regions of low shear rate (Abbott et al. 1991). Concentration gradients cause the 
migration of spheres through two mechanisms. One is attributed to irreversible 
interactions between particles that result from even slight surface roughness of the 
particles, while the other comes from the spatially varying viscosity due to the gradients 
in the particle concentration (Leighton & Acrivos 1987b; Phillips et al. 1992). 

Another mechanism that causes the drift of spheres, which is addressed in this paper, 
is due to many-body hydrodynamic interactions among the particles under shearing 
flow (Eckstein et al. 1977; Leighton & Acrivos 1987a; Phan & Leighton 1993). For this 
' shear-induced self-diffusion ', a single ' tracer' sphere in a homogeneous suspension 
undergoing simple shearing flow interacts with its neighbours, and experiences a series 
of displacements normal to the streamlines of the macroscopic shearing flow. These 
displacements are random with zero mean (i.e. on average the particle will remain on 
its initial streamline). The test particle experiences a random walk process that is akin 
to classical self-diffusion but which, in this case, is shear-induced. In the presence of a 
concentration gradient, such a random walk leads to a diffusive flux that may be 
characterized by a diffusion coefficient (see below). One should note that in dilute 
suspensions of large perfectly smooth spheres, the particles return to their initial 
streamlines at the end of all two-particle interactions owing to linearity of the viscous- 
flow equations. At least three particles must interact to yield the permanent 
displacements that lead to a random walk with non-zero mean. 

The self-diffusion process for hydrodynamically interacting spherical particles in a 
simple shearing flow bears some resemblance to the diffusion of Brownian particles 
(Rallison & Hinch 1986). To determine the diffusivities for Brownian particles, one 
actually follows a particular (tracer) particle that is initially located at the origin and 
determine its displacement, Y, as a function of time, t. Repeating this process for many 
different starting conditions allows the construction of the mean-square displacement 

As a particle moves from some initial position in a homogeneous suspension, it 
interacts hydrodynamically with its neighbours. For short times, the test particle sees 
an isotropic cage surrounding it, which affects its motion only in modifying the mean 
hydrodynamic resistance. Its motion is diffusive in character with (rz(t)) N t. This 

( Y Y O ) .  
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purely diffusive motion persists as long as the configuration of particles surrounding 
the test particle is not influenced significantly by the motion of this test particle. The 
particle motion can be described through a short-time self-diffusion coefficient, DS,, 

( r 2 ( t ) )  N D i t .  (1.1) 
Equation (1.1) holds for times over which the relative positions of the particles 

surrounding the test particle hardly change. As time progresses, the test particle 
interacts with its neighbours and its motion cannot be described by a pure diffusion 
process, that is, ( r ' ( t ) ) / t  =I= constant. Over a very long time period the test particle 
encounters many other particles. The sum of these random steps can again be 
considered as a diffusion process with a long-time self-diffusion coefficient, D;, 

(1 -2) 
Equation (1.2) holds for 'long times' during which the test particle moves, on average, 
a distance equal to many particle diameters. 

Bossis & Brady (1987) have used Stokesian dynamics to predict the self-diffusion of 
monodispersed suspensions of Brownian spheres (Pe = 0-1000) including hydro- 
dynamic interactions. For such particles, if the mobilities of the spheres are known 
- as a function of their positions - Di is calculated using a generalized Einstein relation 
(Batchelor 1976). This relates Di to an average of these mobilities over all the 
configurations of the spheres. Beenakker & Mazur (1984) presented a theory for the 
concentration dependence of D;, which is valid up to high concentrations, that 
accounts for many-body hydrodynamic interactions. They obtained a second-order 
virial expansion in q5v for Brownian particles. Experimentally, DS, has been determined 
for Brownian particles using dynamic light-scattering techniques (Fijnant 198 1 ; Pusey 
& Van Megen 1983; Ottewill & Williams 1987). Phillips, Brady & Bossis (1988) 
determined Di numerically for hard-sphere dispersions using a Monte Carlo technique 
combined with Stokesian dynamics. Their results agree with both the experiments and 
theories for Brownian particles mentioned above. For suspensions with purely 
hydrodynamic interactions among spheres, Di is the average mobility of a particle and 
can be calculated by averaging the mobilities over many sphere configurations. 
However, except for the value of Di calculated by Bossis & Brady (1987) for a 
monolayer of spherical particles with purely hydrodynamic interactions, at an area 
fraction, 

The long-time diffusivity for suspensions with purely hydrodynamic interactions 
among spheres, 02, has been experimentally determined for monodispersed 
suspensions by Leighton & Acrivos (1987a) using a circular Couette device of the type 
originally used by Eckstein et al. (1977). The outer cylinder was rotated and the motion 
of a tracer sphere was observed. Measurements were made of the successive transit 
times required for a tagged sphere to complete full 360" orbits about the cylinder axes. 
Leighton & Acrivos (1987a) derived an expression for the probability density, p(t' I t) ,  
of completing the second orbit in time interval t', given that the first transit required 
time t. On this basis they were able to devise a scheme that permitted the calculation 
of DL solely from their transit time measurements. This represented a simplification 
over the original measurements made by Eckstein et al. (1977), whose determinations 
of 0; had required measurement of the radial location of the tagged sphere after each 
completed orbit, as well as the transit time. 

For a dilute suspension of monodispersed spherical particles of radius a, Leighton 
& Acrivos (1987~) found D& to have the asymptotic form 0.5~a2q5~. This is in contrast 
to the linear dependence of upon q5v that was reported in the same limit by Eckstein 
et al. (1977). Leighton & Acrivos (1987a) also provided measurements of DL for solid 

( r 2 ( t ) )  - 0; t. 

of 0.453 there are no other results for Di for large sphere suspensions. 
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concentrations up to $o = 0.40. We note that both Eckstein ef al. (1977) and Leighton 
& Acrivos (1987~) neglect the bounding walls of the Couette device, as well as its 
curvature, in order to simplify their analyses. An alternative theoretical approach, 
which is essentially similar to the Taylor-Aris-type dispersion analysis, was presented 
by Nadim (1988). It provided a foundation for more accurate measurements of 02, 
particularly for concentrated suspensions where 0: is large and the marked particle 
quickly diffuses to the vicinity of the walls. Full account was taken of the curvature of 
the Couette device geometry and of the excluded volume effect resulting from the finite 
size of the tagged sphere that prevents its centre from approaching the bounding walls 
beyond one particle radius. 

More recently, Phan & Leighton (1993) have extended the work of Leighton & 
Acrivos (1987 a )  and measured the shear-induced tracer diffusivity in a concentrated 
suspension (0.3-0.55 solids volume fraction) of non-colloidal spheres (670 pm average 
diameter) by examining the random walk of marked particles with diameters ranging 
from 213 to 6350 pm. For measurements in the plane of shear Phan & Leighton 
followed the approach of Leighton & Acrivos (1987~) and examined the influence of 
the walls through Monte Carlo simulation of the migration process, which showed the 
transition from the unbounded limit to the bounded Taylor dispersion limit studied by 
Nadim (1988). Measurements normal to the plane of shear were made by directly 
observing the random motion of the tracer particle normal to the plane of shear in 
digitized video images. Both diffusivities were found to scale as vu:/a,, where a, is the 
suspending particle radius and a, is the tracer particle radius, for aJa, 2 2. The 
diffusivity in the plane of shear appeared to approach a constant value for a,/a, d 1. 
Phan & Leighton also found that, in contrast to the shear-induced diffusivity which 
results from particles being pushed from regions of high concentration to low and 
diverges at high concentrations in a manner similar to the suspension viscosity, the 
tracer diffusivity appeared to approach a constant value at high concentrations, and 
the tracer diffusivity normal to the plane of shear was approximately two-thirds of that 
in the plane for all concentrations and tracer particle sizes. 

All of the results mentioned above (except for Phan & Leighton 1993, whose tracer 
particles had different sizes as compared with the suspending spheres), both for 0: and 
02, are for monodispersed suspensions only. Suspensions of practical interest are 
rarely composed of uniform sized spheres. At high concentrations, processing 
properties, specifically viscosity, are more favourable if bimodally distributed 
suspensions are used (e.g. Chong, Christiansen & Baer 1971; Miller et al. 1991). 
Recently, we have used Stokesian dynamics to calculate the macroscopic rheological 
properties of bimodal suspensions of spherical particles (Chang & Powell 1993). In this 
paper, we address the issues of the influence of variations in particle size on the shear- 
induced diffusive transport. We present results for both the microstructure (e.g. pair- 
connectedness function) and the average mobilities and long-time self-diffusion 
coefficients for bimodal suspensions as determined by Stokesian dynamics. In $2  we 
give a brief description of Stokesian dynamics as used to simulate suspensions of 
bimodally distributed spherical particles in a Newtonian fluid. The appropriate 
averages defining the average mobility (i.e. DS, for Pe = 00) and the long-time self- 
diffusion coefficient are presented. In $3 we present simulation results for a monolayer 
of unequal-sized spheres subjected to a simple shearing flow. Section 4 provides a brief 
synopsis of the principal results. 
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2. Simulation method 
2. I .  Stokesian dynamics 

A discussion of the application of Stokesian dynamics to suspensions of unequal-sized 
spheres is given in Chang & Powell (1993). Formulae required to implement this 
technique can be found in Chang (1993). Here, we provide a brief review of those 
results. We consider a finite system of particles consisting of two sets of rigid spheres 
having different radii a and b. The particles are small enough such that the particle 
Reynolds numbers, Ua/u and Ub/v, are much less than unity where U is a 
characteristic velocity and u is the kinematic viscosity of the fluid. There exists a set of 
linear relations between the rigid-body motion of the spheres and the moments (forces, 
torques, stresslets) exerted on the particles. For the resistance problem, the moments on 
the spheres are determined for specified translational and rotational velocities of the 
particles in an ambient linear velocity field. using the grand resistance matrix, R, the 
force and torque ( F )  and the stresslet (S) exerted by the particles on the fluid are related 
to the particle translational and rotational velocities (U) and the rate of strain of the 
undisturbed flow, Em, through 

For example, for N particles, U -  U" is a vector of dimension 6N containing the 
translational and rotational velocities of all N particles relative to the imposed flow at 
infinity, U", evaluated at the centre of the particles; Em is a vector of dimension 5N 
that repeats the imposed rate of strain for each particle; F is a 6N vector containing 
the force and torque exerted by the particles on the fluid ; and S has dimension 5N and 
contains the particle stresslets (the symmetric and traceless part of the first moment of 
the force distribution integrated over the particle surfaces, or physically, the 
contribution to the bulk stress due to the existence of the particles). The inverse of the 
grand resistance matrix, the grand mobility matrix, M allows U to be calculated from 
the applied moments 

When only two spheres are considered, the grand resistance matrix is known exactly 
for all centre-centre separations and all sphere size ratios (Jeffrey & Onishi 1984; Kim 
& Karrila 1991; Jeffrey 1992). Similarly, the grand mobility matrix (Chang 1993; 
Chang & Powell 1994b) can be found using the results of Jeffrey & Onishi (1984) and 
Kim & Karrila (1991). The analysis of concentrated suspensions requires the 
calculation of many-body hydrodynamic interactions among the spheres. Results for 
pairs of particles are not sufficient in studies of concentrated suspensions, where the 
hydrodynamic interactions are not pair-wise additive (Glendinning & Russel 1982). 
Recently, Brady, Bossis and coworkers (Bossis & Brady 1984, 1987, 1989; Brady & 
Bossis 1985, 1988; Durlofsky, Brady & Bossis 1987; Durlofsky & Brady 1989; Brady 
et al. 1988) have developed a simulation technique for treating many-body interactions 
of concentrated suspensions which is termed ' Stokesian dynamics '. This uses a 
molecular-dynamics approach to follow the time evolution of the positions of particles 
in a suspension, from which mean field microstructural information such as the pair- 
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correlation functions can be derived. Macroscopic transport properties, such as shear 
viscosity, can also be calculated using appropriate averaging schemes (Brady & Bossis 
1988). 

Stokesian dynamics, also termed the multipole-moment method (Weinbaum, 
Ganatos & Yan 1990), deals with the hydrodynamic interactions among spheres in 
concentrated suspensions in two ways. Firstly, the grand mobility matrix is inverted to 
obtain the grand resistance tensor, which describes the far-field many-body 
interactions. The grand mobility matrix only describes the velocity disturbance 
produced by a few lowest-order multipoles representing each sphere, and does not 
contain the reflections of the other spheres required to describe the screening effects 
associated with many-body interactions. However, its inversion produces the grand 
resistance matrix, in which sums of all the multipole reflections of the lowest order 
multipoles are included. To form the grand mobility matrix for bimodal suspensions, 
we take the integral solution of the Stokes equation and use the multipole-moment 
method to expand the force density on the surface of each particle. The zeroth moment 
is the total force, and the first moment has both antisymmetric and symmetric parts 
(the torque and stresslet, respectively). We truncate the multipole expansion after the 
dipole terms, although two higher multipole contributions that result from the finite 
size of the sphere are included (Chang & Powell 1993, 1994b). The grand mobility 
matrix is then readily constructed using Faxen's laws (Batchelor & Green 1972). 

While the multipole expansion is truncated after the dipole terms, inverting the 
mobility matrix solves the many-body problem at the level of forces, torques, and 
stresslets. This many-body approximation to the resistance matrix lacks an accurate 
representation of the hydrodynamic forces between nearly touching particles. This 
would be reproduced upon inversion of the mobility matrix if all multipole moments 
were included, which is impractical. This gives rise to the second essential feature of 
Stokesian dynamics : the inclusion of near-field lubrication effects between particles 
using exact formulae for two-body interactions. Owing to their short-range nature, 
such lubrication forces can be introduced in a pairwise-additive fashion in the 
resistance matrix. The grand resistance matrix can then be partitioned as in (2.2) and 
used to write the evolution equation 

U -  U" = RFb.(F+ R,*E"). (2.4) 

Equation (2.4) permits the velocities U to be found for an imposed linear flow at a 
given (instantaneous) particle configuration. Once the velocities of the spheres are 
found, the new particle positions are calculated with a given time step. Typically, this 
is done by using regular predictor or predictor-corrector methods (Carnahan, Luther 
& Wilkes 1969). 

The macroscopic properties of the suspension are found from appropriate definitions 
that involve averages over particle configurations and, in a dynamic simulation, over 
time. For example, the N-particle diffusion tensor, D, is defined by (Brady & Bossis 
1988) 

where k is the Boltzmann constant, and T is the absolute temperature. The average 
mobility at Pe = cc is obtained from D by 

D kTR& = kTM, (2.5) 

Di = (Di i ) ,  (2.6) 

where ( . ) denotes an average over all configurations and the subscript ii (no sum on 
i) indicates that only the diagonal, or self, terms are included in the averaging. The 
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long-time self-diffusivity 02, which measures the ability of a particle to wander far 
from its starting point, is defined through (Brady & Bossis 1988; Bossis & Brady 1990) 

I d  
t+m 2 dt 

DL = lim - - ((x - (x))'). 

Here, ((x - (x))') is the mean-square displacement of a reference particle. 

2.2. Simulation of a sheared monolayer 
For the full three-dimensional problem, there are three unknown velocities (or forces), 
three angular velocities (or torques) and five strain rates (or stresslets) for every 
particle. The grand mobility tensor is therefore of size l l N x  11N, the inversion of 
which requires O((1 lN)3) operations. For a system with 50 or more particles, this is too 
computationally intensive for dynamic simulations. To reduce the computational cost, 
we have performed simulations of a monolayer of unequal-sized (bimodal) rigid non- 
Brownian, and non-colloidal spherical particles subjected to a simple shearing flow. In 
a monolayer the centres of the spherical particles are required to lie in the same plane, 
the plane of shear, which results in substantial computational savings (the number of 
degrees of freedom per particle is reduced from 11 to 6) without compromising the 
essential physics. Particle-particle interactions which result from the macroscopically 
imposed simple shearing flow, having a shear rate y ,  all occiir in this plane. The bulk 
rate-of-strain tensor €" is given by 

€ a = ?  Y I" 1 0 O ]  0 (2.8) 
t o  o O J  

a=- M O ,  0, l) .  
and the bulk vorticity a is 

Creeping flow conditions apply and the particles are assumed to be neutrally 
buoyant. There are neither external forces (e.g. due to gravity) nor external torques 
(e.g. due to a magnetic field) acting on the particles. We model an infinite suspension 
by replicating a basic unit cell using periodic boundary conditions. Each particle is 
centred on its own periodic cell and interacts only with its neighbours in that cell. For 
a suspension monolayer, Ewald sums that account for long-range effects, are not 
required since the particle interactions are convergent for force-free and torque-free 
particles (Bossis & Brady 1990). Generally, it can be shown (Bossis & Brady 1984; 
Brady & Bossis 1985) that the hydrodynamic interactions are long-ranged, falling off as 
the inverse square of the distance between the centres of spheres for force-free particles. 
Particles outside the periodic cell make no contribution to the translational- 
rotational velocity of the particle at the centre of the periodic cell to within 
an error O(R-'), R being a characteristic dimension of the cell. In our case, R is the cell 
length, H ,  non-dimensionalized by the radius of a large sphere. Thus, as the size of the 
periodic cell increases, the effect of the particles outside the cell can be made arbitrarily 
small. This is achieved by choosing N ,  the total number of particles, appropriately once 
the size ratio of the spheres, A, and the areal fraction of total solids that are small 
spheres, 6, are fixed. Usually, we choose the magnitude of O(RP2) as 0.01. To check the 
effect of the total number of particles and the size of the periodic cell, we have tested 
two different conditions for each h with 5 fixed but changing N and H .  For example, 
this is shown in table 1 for h = 2, [ = 0.273 with N = 25 or 49. The magnitude of 
O(R-2) errors for these two cases is 0.012 and 0.006, respectively. We obtained 
statistically the same results for the average mobilities and long-time diffusivities for 
these two cases. This shows that within the error of 0.01 the influence of N and H is 
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h g NL N ,  
2 0.073 19 6 
2 0.273 10 15 
2 20 29 
2 0.494 10 39 
2 0.642 6 43 
2 0.836 3 61 
4 0.074 11 14 

22 27 
4 0.273 7 42 
4 0.495 6 94 

TABLE 1. Parameters for simulations. Two types of numerical experiments were performed: (i) (see 
above) fix the size ratio of spheres, A, at 2 or 4 and the area fraction of solids, $&, at 0.503, then vary 
the fraction of small spheres, E ;  (ii) set 6 = 0.27 and for seven values of $a (0.1 18,0.236, 0.354, 0.453, 
0.503, 0.55, 0.60) determine the effect of varying the size ratio of spheres from h = 1 to h = 4. 

- 

- - 

limited. The same scenario is also found for h = 4,g = 0.074 with N = 25 or 49, where 
the magnitude of O(K2) errors is 0.013 and 0.007, respectively. 

The simulations were initiated with the particles located at random positions in the 
periodic cell. Upon starting the shearing flow microstructural changes were calculated 
in time until steady state was reached. This was determined by monitoring the time 
average of the square of the x- and y-components of the particle velocities relative to 
the bulk shear flow. We note that while steady state was achieved on a time-average 
basis, small fluctuations occurred on the short-time scale. We used a shear rate of 1.0. 
With a time step of 2 x lop4, steady state was reached in approximately 100000 time 
steps. The pair-connectedness function (Seaton & Glandt 1987), p(r) ,  which is a 
measure of suspension microstructure and defined in $3, and average mobilities at 
Pe = co, D& reported below were averaged over the last 100000 time steps. The long- 
time diffusivity, 02, was calculated using the results for the whole time period. To 
determine the statistical errors, simulations for the same values of solid area fraction 
$a, A, 5 and N were performed starting from different initial conditions, for a total of 
five numerical experiments for each suspension. We report results for areal fractions up 
to 0.6. Simulations of more concentrated suspensions become too expensive, as the 
time step must be reduced to follow the particle trajectories without particles 
overlapping during a time step. All calculations were performed in double precision on 
an IBM 3090, DEC 5000/200, or a Cray Y-MP. A summary of the different runs is 
presented in table 1, which gives the values of the parameters A, 6 and r j a  as well as the 
number of large and small spheres, Nl and N ,  respectively. 

3. Results and discussion 
In this section we present dynamic simulation results for both microstructure (pair- 

connectedness function) and macroscopic rheological properties (average mobility and 
long-time self-diffusivity) of bimodal suspensions. All simulations were started at t = 0 
with the particles located randomly in the periodic cell. The initial positions were 
determined by first placing the spheres in a regular array and then perturbing them a 
small random distance. The only constraint placed on the random displacements was 
that they not be so large as to cause particles to overlap. A typical initial configuration 
for a bimodal suspension having r j a  = 0.50,c = 0.27 and h = 2 is shown in figure 1 (a). 
Once a stationary state has been reached, the suspension is, on average, organized 
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x 

FIGURE 1. (a) Initial configuration for a randomly distributed bimodal suspension, with $a = 0.50, 
5 = 0.27 and h = 2. The dashed lines are the boundaries of the periodic cell. (b) Instantaneous 
microstructure after steady state is reached. Small spheres tend to fit in the spaces among the large 
spheres with the particles forming clusters. 

according to the relative locations of the small and large particles. An instantaneous 
'snapshot' of the suspension microstructure is depicted in figure 1 (b). We observe that 
small spheres tend to fit in the spaces among the large spheres with the particles 
forming clusters. A series of animated 'movies ' generated from simulation results for 
both monodispersed and bimodal suspensions with different h and 6 have shown that 
these clusters tend to form along the compressive flow direction (135") rotate as a solid 
rod (due to vorticity) and then break up in the extensional flow direction (45") (Chang 
& Powell 1993). Similar results for monodispersed suspensions have also been reported 
by Brady & Bossis (1988). 

While observations such as these provide good qualitative insight into the dynamics 
of suspensions, quantitative features of the suspension microstructure must be 
determined in order to macroscopically model transport properties. The microstructure 
itself can be described through one of various measures (pair-distribution or pair- 
connectedness function) of the average relative positions of particles. The transport 
properties are usually described through the relative viscosity (Chang & Powell 1993) 
and the diffusivities. The diffusivities give average measures of the motions of 
individual particles. Hence, combining distribution functions with the diffusivities gives 
the instantaneous microstructure as well as macroscopic transport properties of a 
suspension. 

3.1. Pair-connectedness function p(r)  
One way to describe the microstructure of a suspension is through the particle 
distribution functions. There are different distribution functions that provide 
microstructural information and measures of clustering in continuum-percolation 
systems. For example, the pair-distribution function, g(r) (Bossis & Brady 1984; Chang 
& Powell 1993), has been defined as the probability of finding a particle centre at 
position r given that there is a particle centre at the origin r = 0, divided by the number 
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FIGURE 2. The radial dependence of the angle-averaged pair-connectedness function ( p ( r ) ) ,  for a 
monodispersed suspension, h = 1, having 9, = 0.50 and N = 49. The dimensionless sphere diameter 
is 2. 

density. In sheared suspensions g(r) is generally both angularly and radially dependent, 
for example in two-dimensions g(r) = g(r ,  8). In our companion paper (Chang & 
Powell 1993), we have presented results for the angle-averaged pair-distribution 
function, (g(r)),,  for bimodal suspensions with the size ratio of the spheres h = 2 and 
4, the area fraction of small spheres of total solids being 0.27, and the area fraction of 
total solids being 0.5. These indicated that in concentrated suspensions nearly 
' touching' particle pairs (large-large, large-small, or small-small spheres) form due to 
the lubrication forces between them. The pair-connectedness function, p(ri ,  rj) ,  provides 
another measure of suspension microstructure. It is of central importance in describing 
particle distributions when considering the statistical mechanics of clustering in 
continuum systems (Seaton & Glandt 1987; Sevick, Monson & Ottino 1988; Lee & 
Torquato 1988; Kim & Torquato 1990). 

The pair-connectedness function is defined such that the quantity n2p(ri, r j )  dri drj 
represents the probability that two particles i a n d j  reside in volume elements dri and 
drj centred at ri and rj respectively, and are members of the same cluster, with n being 
the number density of particles in the system. For a suspension monolayer undergoing 
simple shearing flow, the pair-connectedness function is both angularly and radially 
dependent. It differs from the pair distribution function, g(r),  in that for p(r)  the 
particle pairs must belong to the same cluster. Thus, p(r)  provides direct information 
about the particle microstructure within clusters. To compute p(r)  as well as other 
measures of cluster size, we must distinguish between different clusters. This is achieved 
by specifying the maximum particle-particle separation required for two (or more) 
particles to be a cluster. For bimodal suspensions, two particles of radius a and b are 
'directly' connected if the gap, 6, between two spheres satisfies the relation 

c / (a+b)  < 1. (3.1) 
For the results presented here, we have followed Bossis & Brady (1989) and chosen 

c as lop2 for the separation (or maximum 'bond') distance which defines that two 
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FIGURE 3. The radial dependence of the angle-averaged pair-connectedness function ( ~ ( r ) ) ,  for 
bimodal suspensions with h = 2, $a = 0.50 and = 0.27. (a) ( p ( r ) ) @  relative to a large sphere; (b )  
( ~ ( r ) ) ~  relative to a small sphere. 

spheres belong to the same cluster. The results for c = lo-’ and are close to those 
for 6 = lo-’. For example, for the case of h = 1 and = 0.50, the number-average 
mean cluster size is 6.2 for c = lop2 as compared with 6.4 and 6.1 for 6 = 10-1 and lop3 
respectively. 

Pairs of particles can be ‘indirectly’ connected through chains of the other particles. 
In order to distinguish different clusters in the suspension we employ a cluster-counting 
algorithm, similar to the ‘ cluster-labelling ’ method that was originally developed for 
lattice percolation (Hoshen & Kopelman 1976) and subsequently adapted for 
continuum percolation (Gawlinski & Stanley 1981). The essence of the algorithm is to 
give each particle a number that indexes it within the total particle population (1 to N )  
and a label that denotes the cluster of which it is a member. As an example, the label 
of particle number 1 is ‘ 1 ’. If no bonds emanate from it, it is a single particle ‘cluster’ 
with size 1. If bonds emanate from this particle, the algorithm moves along each of 
them to the neighbouring particles and assigns to the ‘attached’ particles the label ‘ 1 ’. 
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FIGURE 4. As figure 3 but with h = 4. (a)  ( p ( r ) ) ,  relative to a large sphere; (b)  ( p ( r ) ) ,  relative to 
a small sphere. 

The algorithm moves systematically from particle to particle, assigning labels in this 
way until all the bonds that are accessible starting at particle 1 are traversed. When no 
bonds remain to be traversed, all the particles attached either directly or indirectly (i.e. 
via other particles) to particle 1 are labelled. If particle number 2 already has a label, 
it is not considered again. If it does not have a label, it and all the particles connected 
to it are given the label 2. This procedure is repeated for each of the N (  = N L  + N,) 
particles. Upon completion, each particle has a label denoting the cluster to which it 
belongs and the cluster size, pair-connectedness function as well as other statistic 
measures for a particular configuration can be calculated. 

Our simulations use periodic boundary conditions to simulate a suspension of 
‘infinite’ extent. For the simple shearing flow represented by (2.8) and (2.9), the 
periodic conditions in the x- and z-directions are straightforward, but periodicity in y 
requires a translation in x by an amount H j t  in order to preserve the bulk linear 
shearing flow (Evans 1979; Bossis & Brady 1984). Here, H is the periodic box height 
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FIGURE 5. The angular dependence of the pair-connectedness function p,,(6) in the Ar range 
2 Q r d 2.05 for monodispersed suspensions having $a = 0.50. The symmetry ofp,,(O) about 0 = 90" 
implies that there are no normal-stress differences, with purely hydrodynamic interactions among 
particles. 

in the y-direction. While the central cell is surrounded by identical replicas in the x- 
direction, this is neither necessarily nor usually the case in the y-direction. In 
calculating p(r),  the relationship between a reference particle and its nearest N -  1 
neighbours is considered. Some of the neighbours might not be in the same central cell 
as the reference particle. Just as the record of the bonding between particle accounts 
for bonding between particles in different replicas, the procedure to determine p(r)  
correctly finds the cluster size distribution in the infinite system of a suspension. 

The computation of the angle-averaged pair-connectedness function, ( p(r))o,  is now 
relatively straightforward. First, we construct concentric shells of radii r ,  = mAr, 
where m = 1,2,3,. . . , M and MAr < H d 2 ,  around each particle in the system, where 
Ar is a distance which is small compared to a and b. We have used Ar = 0.05, with Ar 
being non-dimensionalized by the radius of the small sphere. We count the number of 
particles whose centres lie in a specific shell and are connected (directly or indirectly) 
to the central reference particle. The number of connected particles for each value of 
m is obtained from which ( p ( r ) ) ,  is constructed. Figure 2 shows (p ( r ) ) ,  for a 
monodispersed suspension, h = 1, with 49 spheres and = 0.50. Here, it is seen that 
a reference sphere of dimensionless radius 1 has the highest probability of finding other 
spheres as its nearest neighbours (the first peak) and has a lower probability of finding 
doublets (third peak) and triplets (cyclic form, second peak) next to it. We have shown 
in Chang & Powell (1993) that there was no second peak ( r  z 3.46) for = 0.4. As 
the concentration is increased, the cyclic conformation is favoured as the less compact 
linear trimers are more likely to be absorbed into larger clusters. The small peaks at 
r z 5.29 and 5.46 are due to the cluster structures shown in the sketch. 

Figures 3 and 4 show (p ( r ) ) ,  for bimodal suspensions with the same # a  = 0.50 and 
[ = 0.27, but different A ,  2 and 4 respectively. For the h = 2 case shown in figure 3 we 
have used 20 large spheres and 29 small spheres in the simulations. Figure 3 (a)  shows 
(p(r>) ,  for a large sphere (radius 2) centred at r = 0. Such a large sphere is observed 
to have a higher probability of finding small spheres as its nearest neighbours (the first 
peak) than other large spheres (the second peak). We also see that some small-small 
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suspensions with A = 2, = 0.50 and 6 = 0.27. The Ar ranges for the large sphere are 3 < r < 3.05 
and 4 < r < 4.05; for the small sphere the ranges are 2 < r < 2.05 and 3 < r < 3.05. 0, 3 < r < 3.05 
(large sphere); . ,4 < r < 4.05 (large sphere); 0 , 2  < r < 2.05 (small sphere); A, 3 < r < 3.05 (small 
sphere). 
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FIGURE 7. The angular dependence of the pair-connectedness function near contact pA,(B) for bimodal 
suspensions with A = 4, = 0.50 and 6 = 0.27. The Ar ranges for the large sphere are 5 < r < 5.05 
and 8 < r < 8.05; for the small sphere the ranges are 2 < r < 2.05 and 5 < r < 5.05. 0, 5 < r < 5.05 
(large sphere); . , 8  < r < 8.05 (large sphere); 0 , 2  d r < 2.05 (small sphere); A, 5 < r < 5.05 (small 
sphere). 

(peak at r x 5) and small-large (peak at r x 6 )  sphere doublets next to the large 
reference particle form linear arrays of particles. The small peak at r x 4.5 indicates 
that a large reference sphere is ‘touching’ a cyclic trimer of small spheres. The small 
peak at r x 6.37 is from the cluster structure in the sketch. Figure 3(b)  shows ( p ( r ) ) ,  
for a small sphere (radius 1) centred at r = 0. Here, it is seen that there is a slightly 
higher probability of finding large spheres as its nearest neighbours than small spheres. 
Peaks at r 3.5 and 4.0 result from the same cluster morphology described in figure 
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2: cyclic trimers and doublet of small spheres next to the reference small sphere, 
respectively. Small-large sphere doublets next to the reference small sphere give rise to 
the peak at r z 5.0. The small peaks at r z 5.29 and 5.46 also result from the same 
cluster morphology described in figure 2 and due to the cluster structures shown in the 
sketch. 

For the case of h = 4 ,7  large spheres and 42 small spheres were used. Since there are 
many more small spheres than large spheres in the suspension, one expects that both 
large and small spheres have higher probabilities of finding small spheres as their 
nearest neighbours rather than large spheres. Figure 4 supports this hypothesis. The 
large peak in figure 4(a) at r M 5 represents the centre of a small sphere next to a large 
sphere of radius 4. This is much larger than the peak at r M 8, which results from large- 
sphere doublets. In figure 4(b) the peak at r M 2 results from small-sphere doublets, 
which are more probable than small sphere-large sphere doublets (peak at r M 5). The 
peak at r z 7.0 in figure 4(a) indicates that small-small sphere doublets were formed 
next to the reference large sphere, and the peak at r M 6.6 shows that a large sphere is 
'touching' a cyclic trimer of small spheres. The small peak at r z 8.42 is due to the 
cluster structure shown in the sketch. In figure 4(b), the peaks at r z 3.5 and 4.0, and 
small peaks at r z 5.29 and 5.46 have the same structures as those described above for 
figures 2 and 3 (b). In our earlier findings (Chang & Powell 1993), we did not have the 
small peaks at r M 4.5 in figure 3(a), Y M 3.5 in figure 3(b), r M 6.5 in figure 4(u) and 
r M 3.5 in figure 4(b). The reason might be the method used to calculate (g(r)) ,  in 
Chang & Powell (1993) where only four different angles, 9", 27", 99" and 171", were 
used. In calculating ( p ( r ) ) o  we have used the full 360". 

Figure 5-7 illustrate the angular dependence of the pair-connectedness function near 
contact, p,,(B), for Ar = 0.05. Upstream of the reference particle is represented by 
8 = 180", while B = 0" is the downstream direction, where 0 is shown in figure 1. The 
conditions of the simulations in figures 5-7 are equivalent to those of figures 2-4, 
respectively. For monodispersed suspensions, figure 5, we have used 2 < r < 2.05, 
which includes the first-nearest-neighbour peak. For h = 2, figure 6, we have used two 
different sets of ranges for each size of sphere, i.e. 3 < r < 3.05 and 4 < r < 4.05 for 
large spheres, and 2 < r < 2.05 and 3 < r < 3.05 for small spheres. In this way, we 
include the first- and second-nearet-neighbour peaks (large-large, large-small, 
small-large and small-small sphere pairs) as shown in figure 3. By the same reasoning 
for h = 4, figure 7, we have chosen 5 < r < 5.05 and 8 < r < 8.05 for large spheres, and 
2 < r < 2.05 and 5 < r < 5.05 for small spheres. 

Figure 5-7 shows that the angular structures are weak. Macroscopically, this implies 
that there are no normal-stress differences (Brady & Bossis 1985). In figures 6 and 7, 
the line having the highest probability represents the higher likelihood of large spheres 
with other small spheres around them. 

From the results shown in figures 2-7, we can conclude that for a concentrated 
suspension (monomodal or bimodal) under simple shearing flow, the particle doublets 
(large-large, large-small, or small-small spheres), triplets, etc. are formed with 
different configurations (linear or cyclic, depending on the concentration of the 
suspension) due to the lubrication forces between the 'touching' spheres. 

3.2. Average mobility at Pe = 00 

The dependence of the average mobility at Pe = 00, 0:. upon is reported in figure 
8(a) for suspensions having the fraction of total solids that are small spheres, f ,  fixed 
at 0.27 for the size ratio of the spheres h = 1, 2 and 4. The reported values are x- and 
y-averages, that is Di = i(Dz.+DuJ, which are averaged over the last 100000 steps 
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FIGURE 8. (a) Dependence of the average mobilities, Do/D,, on area fraction, for h = 1,  2 and 4. 
The fraction of small spheres is fixed at f ;  = 0.27 for h = 2 and 4. ., h = 1 ; +, large spheres, h = 2; 
0, small spheres, h = 2; m, large spheres, h = 4; A, small spheres, h = 4. (b)  Dependence of the 
relative viscosities, qr, on area fraction, $a, for h = 1, 2 and 4. The fraction of small spheres is fixed 
a t g = 0 . 2 7 f o r h = 2 a n d 4 .  . , h = l ; O , h = 2 ; A , h = 4 .  

and normalized with respect to the diffusivity of a single isolated sphere. Since our 
bimodal suspension contain both small and large spheres, different values of D; are 
given for each sphere size. Our result for a monodispersed suspension at = 0.453 is 
0.51 k0.02, where k stands for the standard deviation for five different runs, which 
compares favourably with the value 0.5710.01 calculated by Bossin & Brady (1987). 
Figure 8 ( a )  shows that as increases, D:/Do decreases for all values of A, where Do 
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FIGURE 9. (a) Dependence of the average mobilities, D;/Do, on the fraction of small spheres, 6, with 
area fraction, #a, fixed at 0.50. A, h = 1 ;  +, large spheres, h = 2 ;  0, small spheres, h = 2; m, large 
spheres, h = 4; A, small spheres, h = 4. (b)  Dependence of the relative viscosities, v,, on the fraction 
of small spheres, 6, with area fraction, $a, fixed at 0.5. 0 ,  A = 1; 0, h = 2;  +, h = 4. 

is the diffusion coefficient of a single sphere at infinite dilution. That is, the particles 
tend to become immobilized as the concentration increases. This finding agrees with 
results for other transport properties. Figure 8 (b)  shows the results of Chang & Powell 
(1993) for the dependence of relative viscosity, y,., on h and $u with 5 fixed at 0.27. As 
q5u increases, y r  increases for all values of h owing to the distribution of cluster sizes in 
the suspensions. At the high concentrations the lubrication forces between particles 
result in the formation of large clusters concomitant with the decrease in the 
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(A) up to yt = 100. 

instantaneous mobility of a sphere, as shown by the decrease in 0;. In turn, the growth 
in cluster size results in an increase in the viscosity of the suspension. Figure 8 ( a )  also 
shows that for small (less than 0.20), Di/Do is independent of h and the size of the 
sphere. Although such suspensions are not dilute (Di /D ,  + l), this indicates that near- 
field particle-particle interactions are not important and hence @,/Do should have 
approximately the same value for both the large and small spheres and for different 
values of A. From a somewhat different viewpoint D;/D,  being the same for bimodal 
and monodispersed suspensions at small area fractions may result from the same 
scenario as that discussed in Beenakker & Mazur (1984) for Brownian particles. They 
used a simple model to relate the short-time diffusivity to the effective viscosity of the 
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suspension. When the suspension is sufficiently dilute the effective viscosity is close to 
the Einstein viscosity, which is only a function of volume fraction and independent of 
size ratio. On the other hand, in concentrated suspensions, say $a > 0.55, the particles 
form large clusters that contain many large and small spheres. The large cluster tends 
to move for a short time as if it were a single larger 'particle' and thus impart the same 
velocity to both the large and small spheres in the cluster. For example, at I$a = 0.6, 
we found that the spheres tend to form a cluster consisting of up to 80 % of the spheres 
in the periodic cell. Both the large and small spheres in the cluster tend to move at the 
same velocity as the cluster. This can be shown from the data at #a = 0.6 in figure 8 (a),  
by noting that on a dimensional basis we obtain approximately the same Di for both 
large and small spheres. 

Figure 9(a) shows the dependence of Di /Do  on A and 6 with I$a fixed at 0.50. As [ 
increases, Di/Do increases to a maximum value and then decreases as [+ 1 for both the 
large and small spheres, independent of A. The size of this effect is somewhat more 
pronounced for larger A. Figure 9(b) shows the dependence of vr on A and 6 with $a 

fixed at 0.50 (Chang & Powell 1993). As 5 increases, T~ decreases to a minimum value 
and then increases as C+ 1. Figures 9(a) and 9(b) again confirm that for the same A, 
the mobility of a sphere (small or large) increases as the viscosity of the suspension 
decreases. As described above, this can be correlated with the mean cluster size in the 
suspensions, or, on a macroscopic basis, we can consider that to translate a particle in 
a cluster one must also move the other particles in the same cluster and it is easier for 
a particle to move if smaller clusters are present (low concentration) rather than larger 
clusters (high concentration). However, our monodispersed data cannot be compared 
to the Monte Carlo results by Phillips et al. (1988) since for a Monte Carlo simulation 
the particles do not really follow the time evolution as in a dynamic simulation. 
Therefore, some essential dynamics, such as the formation of clusters as time 
progresses (which usually causes high viscosity), is missing when using Monte Carlo 
technique. This results in a lower calculated viscosity (or higher Di)  compared to that 
of a dynamic simulation (Chang & Powell 1994~).  However, we should point out that 
for the short-time diffusivity at Pe = 0 the Monte Carlo simulation is exact (PhilliDs et 
al. 1988). 

3.3. Long-time self-diffusion 
The long-time self-diffusion coefficients, D;, which measure the ability of a particle to 
wander far from its starting point, can be determined by calculating the average 
particle trajectories ( x2 ( t ) ) ,  ( x ( t )  y ( t ) )  and ( y z ( t ) )  during a simulation. Owing to the 
imposed simple shearing flow, (2 )  and (xy) do not grow linearly with time, but have 
the following non-dimensional long-time behaviour (Bossis & Brady 1987) if the time 
is being measured in shear rate units y-' rather than in diffusion times a2 /Do:  

where D,. is the shear-induced diffusivity in the flow direction and DL = Duy. The 
most straightforward way to determine DL is through 

Equations (3.2) and (3.3) are simply the solution for the mean-square displacement of 
a passive diffusing scalar released at the origin in an unbounded simple shearing flow. 
In our simulations, these relations describe the long-time behaviour of a 'tracer' 
particle. The sudden jumps in position associated with the periodic boundary 
conditions are removed, so that the trajectories followed are those that would occur in 
an unbounded fluid, Bossis & Brady (1987) have shown that for a monodispersed 
suspension with I$a = 0.453 and Pe+ co, ( y z ) / t  does not reach an asymptote until the 

( x 2 ( t ) )  = 2D,, t+$DL t3, ( x ( t ) y ( t ) )  = DL t 2 ,  (3-2) 

( y 2 ( t ) )  = 20: t. (3.3) 
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FIGURE 11. Comparison of the simulation of ( y 2 ) / 2 j t a 2  for monodispersed suspensions with 
experiment. All concentrations have been normalized by the maximum packing fraction, q5: = 0.785 
and $2 = 0.605, to compare two- and three-dimensional results. a, Leighton & Acrivos (1987~); 0, 
Eckstein et al. (1977); a, Phan & Leighton (1993); 0 ,  present work. The error bars represent the 
experimental error and the statistical uncertainty in the simulations. 

strain (shear rate times time) is greater than 20. This results from the formation of large 
clusters, encompassing most of the particles, that slowly rotate with the average 
angular velocity of the bulk flow and deform due to the extensional and compressional 
parts of the motion. As shown in figure l(b), similar behaviour occurs in bimodal 
suspensions. The long time required to achieve steady state also indicates that the 
clusters display complex internal dynamics, as particles move within a cluster, but do 
not necessary leave it. The evolution of the clusters results in a long timescale being 
associated with mean particle displacements in the y-direction, especially for large $a. 

This is shown quantitatively in figure 10 (a )  for monodispersed suspensions, where 
(y2)/2jta2 is plotted versus y t ,  a being the particle radius, for suspensions having 
concentrations ranging from 0.12 to 0.60. The factor ?az is the scaling appropriate for 
the 'shear-induced' self-diffusion coefficient of Leighton & Acrivos (19874. Our 
simulation results in figure 10(a) seem to verify the diffusive behaviour of 
monodispersed suspensions, although the slow evolution of cluster dynamics makes it 
difficult to obtain a steady state for highly concentrated suspensions, say $a 3 0.5. For 
example, figure 10(b) shows the results for # a  = 0.503, 0.55 and 0.6. The curves do not 
reach the asymptotic values until y t  > 50. As $a increases from + 0, larger values of 
0% are expected since the tracer particle encounters more spheres which increases the 
mean-square displacement. But for $a 2 0.5,DL appears to approach a constant value 
as suggested by Phan & Leighton (1993). For # a  = 0.453, we obtain a value of D & / j a 2  
of 0.09. This is similar to the long-time value indicated in figure 7 of Bossis & Brady 
(1987). However, we do not find the peak at y t  = 4 in their figure 7. Figure 11 compares 
our simulation results for ( y 2 ) / 2 j a 2  for monodispersed suspensions with experimental 
data given by Eckstein et nf. (1977), Leighton & Acrivos (19874 and Phan & Leighton 
(1993). In order to compare our two-dimensional simulation results with three- 
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FIGURE 12. (a) Dependence of ( y 2 ) / 2 j t r 2  on area fraction, #Ja, for h = 1, 2 and 4. The fraction of 
small spheres is fixed at [ = 0.27 for h = 2 and 4. x , h = 1 ; 0, large spheres, h = 2; +, small spheres, 
h = 2 ;  0, large spheres, h = 4; ., small spheres, A = 4. (b)  Dependence of ( y 2 ) / 2 j t r i # J :  on area 
fraction, $a, for h = 1, 2 and 4. Symbols in (a). 

dimensional experimental work, all concentrations have been normalized by the two- 
dimensional and three-dimensional maximum packing fractions (Brady & Bossis 1985 ; 
Chang & Powell 1993), $2 = 0.785 and $2 = 0.605 respectively. Our results compare 
remarkably well with those of Leighton & Acrivos (1987a) and Phan & Leighton 
(1993). The error bars indicate experiment errors and the standard deviation derived 
from five different simulations with different initial conditions. We also find reasonable 
agreement with the results of Eckstein et al. (1977) at small values of $J$Z and 
$J$2, but for large values their experiment appears to have been constrained by wall 
effects, leading to a reported diffusion coefficient that was much less than the correct 
value (Leighton & Acrivos 1987a). 
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FIGURE 13. Dependence of (y2))12ytr t  on the fraction of small spheres, 6, with area fraction, #a, fixed 
at 0.50. x , h = 1 ; 0, large spheres, h = 2;  +, small spheres, A = 2 ;  0, large spheres, h = 4; ., small 
spheres, h = 4. 

4, h = 1 h = 2(L) h = 2(S) h = 4(L) A =4(S) 

0.118 0.003 0.003 0.003 0.003 0.003 
0.236 0.012 0.009 0.01 1 0.007 0.0 10 
0.354 0.043 0.025 0.038 0.019 0.03 1 
0.453 0.090 0.051 0.087 0.035 0.063 
0.503 0.108 0.067 0.1 10 0.051 0.080 
0.55 0.110 0.080 0.130 0.063 0.098 
0.60 0.117 0.091 0.140 0.077 0.113 

TABLE 2. The long-time diffusivities at 6 = 0.27 and at different fraction of total solids, Cp,, for 
h = 1, 2 and 4 as depicted in figure 12(u). L denotes large spheres and S small. 

Figure 12(a) shows the dependence of ( y 2 ) / 2 j t r i  on the size ratio of the spheres h 
and the total area fraction 4, for bimodal suspensions with the fraction of total solids 
that are small spheres, [, fixed at 0.27, where rL is the radius of the large sphere. Since 
for a bimodal suspension the shear-induced diffusion is caused primarily by the largest 
spheres in the suspension, we have non-dimensionalized the diffusivity by the radius of 
the large spheres. The conditions of the simulations used in this figure are the same as 
those in figure 8 (a). We have tabulated in table 2 the long-time diffusivities against 4, 
for the cases depicted in figure 12(a). At low concentrations, say #, < 0.2, 0; has 
almost the same value for both the large and small spheres, which indicates that the 
many-body interactions are not significant in the dilute cases. As increases (e.g. 
#, > 0.55) the particles tend to form large clusters due to the lubrication forces and 
both the large and small spheres within the clusters tend to move together. Therefore, 
0: has similar values for the large and small spheres ; however, their long-time 
diffusive behaviour is very different from that found at low concentrations. In order to 
see if our results for (y2) /2?j t r i  scale as #:, as found by Leighton & Acrivos (1987a), 
we have plotted ( y 2 ) / 2 j t r ; &  versus q3, as shown in figure 12(b). For monodispersed 
suspension h = 1, the value of (y2)/2j ta2#E is about 0.2 for #a < 0.25. In other 
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6 A =  1 

0 0.108 
0.703 
0.273 - 

0.494 
0.642 
0.836 __ 
1 .o 0.108 

~ 

~ 

~ 

h = 2(L) h = 2(S) 
__ - 

0.140 0.165 
0.067 0.110 
0.062 0.090 
0.071 0.090 
0.085 0.138 

h = 4(L) h = 4(S) 
- ~ 

0.062 0.150 
0.051 0.080 
0.052 0.080 

TABLE 3. The long-time diffusivities at different fraction of small spheres of solids, 6, with A = 1, 
2 and 4 and $a = 0.503 as depicted in figure 13 

words, ( y2) /2y ta2  - 0.295; for 9, < 0.25. If we use a simple scaling law of $a = 3/2#, 
for monodispersed suspensions as suggested by Brady & Bossis (1985), then 
( y')/2yta2 - 0.454; for dilute suspensions. This result compares favourably with 
the ( y2 ) /2y ta2  - 0.595; obtained by Leighton & Acrivos (1987~) for dilute cases. 

Figure 13 shows the dependence of ( y2) /2 j t rL  on h and f with 95, fixed at 0.5. The 
conditions of simulations were the same as those in figure 9(a). We have tabulated in 
table 3 the long-time diffusivities for the cases depicted in figure 13. As increases, 
( y2) /2 j t r ;  decreases to a minimum value and then increases as f + 1 for both the large 
and small spheres and for different values of A. This behaviour is similar to that found 
for the relative viscosity, as shown in figure 9(b), but opposite to that found for the 
average mobility, figure 9(a). Physically, a suspension with a lower viscosity (or higher 
mobility) has a smaller cluster size (Chang & Powell 1993) and therefore lower Dk.  As 
discussed above, for monodispersed suspensions 0% increases as $a increases from low 
concentration (small cluster size) to high concentration (large cluster size). By the same 
token, in bimodal suspensions a tracer particle encounters many more spheres in a 
system with large clusters, and thus has a higher mean-square displacement, ( y ' ) ,  than 
in a system with small clusters. 

Figure 14 shows that ( x y ) / t z  and ( x 2 ) / t 3  gave statistically the same diffusivities as 
( y 2 ) / t  for both h = 1 and 2, indicating the correctness of (3.2) and ( 3 . 3 )  (Bossis & 
Brady 1987). Figure 14(a) shows versus y t  for h = 1 with 95, = 0.50, where (x'), 
( x y )  and ( y ' )  have reached the same value when the strain is greater than 20. Figures 
14(b) and 14(c) show DL versus y t  for h = 2 , f  = 0.27 and = 0.50, for both the large 
and small spheres respectively. Similar to the monodispersed case, attains the same 
value for all (x'), (xy) and ( y ' )  when y t  > 20. In obtaining figures 14(a)-14(d), we 
performed five simulations using different initially homogeneous random configur- 
ations and averaged them for each case of h = 1 and h = 2. We found that Dk was 
reproducible from run to run and determined the same values for (x'), ( x y )  and ( y ' ) .  

3.4. Difusion in bimodal suspensions with an initially organized configuration 
For all of the results reported above, the simulations were begun by randomly 
distributing the spheres in a unit cell, figure 1 (a).  Since the long-time results should be 
independent of the initial configuration, we undertook some calculations to test this. 
Figure 15(a) shows a highly organized initial configuration. The large spheres rest 
mainly in the upper half of the unit cell while the small spheres are in the lower half. 
One row of spheres contains both large and small spheres. The columns are arranged 
so that the particle centres are aligned except for one 'defect' involving a small sphere 
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FIGURE 14(a, b). For caption see facing page. 

near the centre of the unit cell. For this simulation, Nl = 20, N ,  = 29, h = 2, = 0.5 
and (=  0.27. Simple shearing occurs for pt > 0. As with the other simulations, 
particles tended to form clusters, due to the lubrication forces. At Pt = 10, or after 
5 x lo4 time steps, the separation between the large and small spheres remains, 
although some large spheres have been dispersed into the bottom region and some 
small spheres have moved to the top region of the periodic cell. One should note here, 
however, that owing to the use of periodic boundary conditions, the three small spheres 
on the top can have migrated either from the bottom half of the cell shown or from the 
adjacent cell above. Likewise, the two large spheres at the bottom might have moved 
into the periodic cell from the cell immediately below. As time progresses further 
homogenization occurs, involving both large and small spheres. By pt = 20, some 
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FIGURE 14. Dependence of the long-time self-diffusion coefficients, 02, on shear strain, pt,  for (xx), 
( x y )  and ( y y )  as defined in (3.4) and (3.5). (a) h = 1 with $a = 0.50; (b)  large spheres, h = 2 with 
4, = 0.50 and 6 = 0.27; (c) small spheres, h = 2 with 4, = 0.50 and 6 = 0.27. FJ, (xx); A, ( x y ) ;  0 ,  
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small spheres fill the gaps between large spheres and the particles have formed large 
clusters that are more compact than at y t  = 10. After y t  > 30 (say y t  z 40), owing to 
the continuous formation and breakup of large clusters in shearing flow field, there 
seems to be more small spheres in the upper region of the periodic cell than at the lower 
portion. The reason for that might be the rotation of the large clusters, which 'ejects' 
small spheres belonging to it in the bottom region into the neighbouring cell. The 
images of these 'missing' spheres would enter the central periodic cell from the upper 
cell, and hence increase the concentration of small spheres in the upper region. Figures 
15 (b) and 15 (c) show ( p ( r ) ) ,  for a reference large and small sphere, respectively. The 
data, which were calculated using yt = 20 to yt = 30, show that a large sphere has a 
higher chance of finding another large sphere next to it, and a small sphere has a higher 
probability of finding small spheres surrounding it. Compared to figures 3 (a) and 3 (b), 
this indicates that the steady state has not yet been reached at Pt = 30. Yet, the 
calculation of ( p ( r ) ) ,  from y t  = 30 to y t  = 40 shows similar results to figures 3 (a) and 
3(b), which indicates that the steady state can be reached after yt > 30. 

Figure 16 compares the time evolution of ( y 2 ) / 2 j t r i  for initially homogeneous and 
random, and initially organized suspensions, for h = 2, $u = 0.5 and f = 0.27. For 
both initial conditions, both the large (figure 16a) and small (figure 16b) spheres 
achieve diffusive behaviour at long times. There is a slight tendency for the initially 
organized configuration to require a longer time ( y t  > 30) than needed by the initially 
randomly dispersed suspension ( y t  > 20). Further, the initially organized suspension 
approaches asymptotic behaviour more or less monotonically. A similar result was 
found for a suspension with h = 4, $u = 0.5 and f = 0.27, only in this case both the 
large and small spheres need an even longer time to attain the asymptotic diffusive 
behaviour (lit > 40) for the initially organized suspension as compared with the time 
required by the initially homogeneous random configuration ( j t  > 20). 
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4. Conclusions 
We have extended the general method of Stokesian dynamics to compute both the 

microstructure (pair-connectedness functions) and the macroscopic transport proper- 
ties (average mobilities and long-time self-diffusion coefficients) of bimodal suspensions 
of hydrodynamically interacting spherical particles. To minimize computation costs 
while maintaining the pertinent hydrodynamics in the plane of shear, we simulated the 
flow of a monolayer of spheres with their centres coplanar. We replicated a unit cell 
containing N particles using periodic boundary conditions and so represented an 
infinite suspension. 

Cluster formation, a direct result of the hydrodynamic lubrication forces that keep 
particle surfaces from touching, provided a mechanism for the calculated reduction of 
D& the measure of the average mobility of a particle in a local structure, as increases. 
Based upon our earlier results (Chang & Powell 1993), we can link this reduction of D: 
to an increase in the relative viscosity caused by the formation of large clusters in the 
suspension. This analogy carries over to the bimodal case where there is a direct 
correlation among high D& low qr and small average clusters. For long-time self- 
diffusivity, Dk, our simulations agree remarkably well with the experiments of 
Leighton & Acrivos (1987~) and Phan & Leighton (1993) for monodispersed 
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FIGURE 15. (a) The time evolution of the microstructure of an initially organized bimodal suspension 
at y t  = 0 (initial condition), 10,20, 30 and 40. The total area fraction is 0.50 with 6 = 0.27 and A = 2.  
There are 20 large spheres and 29 small spheres in the periodic cell. The central periodic cell (refer 
to figure 1) is shown. (b) ( p ( r ) ) ,  relative to a large sphere. (c) ( p ( r ) ) ,  relative to a small sphere. 

suspensions. For bimodal suspensions, the magnitude of 0; and the time to reach the 
asymptotic diffusive behaviour depend on the cluster sizes formed in the system (or the 
viscosity of a suspension). As $u increases, longer times are needed for both the large 
and small spheres to behave diffusively, a phenomenon similar to the monodispersed 
case. 

A comparison of 0% was made for suspensions which are physically similar (same 
A, #u and t), but with initially different microstructures. A suspension with an initially 
organized configuration requires a longer time for a sphere to attain diffusive 
behaviour than an initially homogeneous and random suspension. This probably arises 
from the very high local concentration in the region with large spheres introduced in 
the initial condition (see figure 1 9 ,  which inhibits the ability of the particles to diffuse. 

Although experimental data are needed to verify our results, the present work shows 
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FIGURE 16. Dependence of ( y 2 ) / 2 j t r 2  on j t  for bimodal suspensions ( A  = 2) with initially random 
and initially organized configurations. The total area fraction is 0.50 with f = 0.27. For both cases, 
there are 20 large spheres and 29 small spheres in the periodic cell. (a) Large spheres in initially 
random configuration (e), and initially organized configuration (0); (b) small spheres in initially 
random configuration (0) and initially organized configuration (0). 

the ability of the Stokesian dynamics to handle diffusive effects in suspensions of 
unequal-sized spheres, as well as providing a thorough understanding of how the 
fundamental mechanisms operating on the microscale affect this behaviour. 
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